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Chain-dynamics-induced distance fluctuations between any two points in a finite chain with or without cross
links are investigated. This model leads to three regimes of temporal behavior for distance autocorrelation: �i�
initial flat time dependence, �ii� t−� power law, and �iii� long-time exponential decay. For an ideal Rouse chain
with frequency-independent friction, �= 1 � 2 . The span of the characteristic power-law behavior of a long chain
could be reduced significantly with the presence of cross links.
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Recent developments in single-molecule spectroscopy
have generated wide interest in probing the conformational
dynamics of a single molecule ��1�, and references therein�.
For example, Xie and co-workers �2–5� showed that by prob-
ing the electron transfer �ET� between a donor-acceptor
�D-A� pair in a protein one can obtain information about
distance fluctuations and protein conformational dynamics.
They considered and analyzed several models, such as
discrete-state hopping �3�, Brownian diffusion �3�, the frac-
tional Fokker-Planck equation approach �4�, and the frac-
tional Brownian noise �FBN� model �5�. Numerous theoret-
ical studies of reactions controlled by a fluctuating barrier
have been made earlier by many including Wang and
Wolynes �6�, Bicout et al. �7�, Bareykin et al. �8�, Barkai et
al. �9�, and Granek and Klafter �10�. The single-molecule ET
studies by Xie’s group prompted us to consider the possible
behavior for linear systems based on chain dynamics. The
results are described in the present Brief Report.

In a recent study Granek and Klafter �10� showed that
with “fractons,” the fractal vibrational excitations, the dis-
tance autocorrelation function �ACF� follows power-law de-
pendence. They noted that one-dimensional vibrational exci-
tations could lead to temporal behavior similar to those of
the FBN process �11�, used by Min et al. �5� to obtain a
Mittag-Leffler function �9� with a parameter H� 3

4 . Although
self-similarity in fractal dynamics generally yields power-
law behavior, a power law can also arise even in its absence.
For example, the power law of fluorescence intermittency in
single quantum dots can be interpreted in terms of a
diffusion-controlled electron-transfer mechanism �12�.

In this work, we first consider an idealized chain model to
investigate distance fluctuations due to chain dynamics and
later an extension to a chain with cross links. Illustrated in
Fig. 1, the Rouse model, with a linear chain of beads coupled
to the nearest neighbors by a spring, has been used exten-
sively in studies of polymers ��13,14�, and references
therein� and more recently in an electrophoretic study of
DNA �15�. Such a model is appropriate for describing a
protein/polymer chain with no links between beads other
than the nearest neighbors. The effects of cross links will be
discussed later. Denoting Q as �q0 ,q1 ,q2 , . . . ,qN−1�, a vector

with qk representing the displacement vector for the kth bead
from its equilibrium position qk,eq, the Langevin equation of
overdamped oscillators in an N-unit chain can be expressed
by

�
d

dt
Q�t� + �2RQ�t� = F�t�/m �1a�

and the generalized Langevin equation is given by

�
0

t

d� ��t − ��
d

d�
Q��� + �2RQ�t� = F�t�/m . �1b�

The Rouse coupling matrix R is defined as Rij
�	=
�,	�2
i,j

−
i,j+1−
i+1,j�, where � and 	 represent x, y, or z, whereas i
and j represent the bead index. At the end point R0j

�	

=
�,	�
0,j −
1,j�, and Ri,N−1
�	 =
�,	�
i,N−1−
i+1,N−1�. F�t� in

Eq. �1b� represents Gaussian noise with zero mean and has
no correlation with Q. Specifically, one has �Fi

��t�Fj
	����

=mkBT��t−��
ij

�	, �Fi

��t��=0, and �Fi
��t�qj

	�t��=0. If ��t�
=2�
�t�, Eq. �1b� reduces to Eq. �1a�.
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FIG. 1. Schematic diagram of a Rouse model with a chain of
beads coupled by a spring to their nearest neighbors, containing a
donor �D� and an acceptor �A�.
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We first consider Eq. �1a� where � is a constant friction
coefficient and treat Eq. �1b� later. Defining �=4�2 /�, one
can show that the pairwise correlation of displacement vec-
tors satisfies

d

dt
�q0�t� · qi�0�� +

�2

�
��q0�t� · q j�0�� − �q1�t� · q j�0��� = 0,

d

dt
�qn�t� · q j�0�� +

�2

�
�2�qn�t� · q j�0�� − �qn−1�t� · q j�0��

− �qn+1�t� · q j�0��� = 0,

d

dt
�qN−1�t� · q j�0�� +

�2

�
�− �qN−2�t� · q j�0��

+ �qN−1�t� · q j�0��� = 0, �2�

when n=1, N−2 and j=0, N−1. Using the method described
in Appendix C of Ref. �16� and definding 
k
=� sin2�k� /2N�, �qi�t� ·q j�0�� is given by

�qi�t� · q j�0�� =
1

N
	
n=0

N−1

�qn�0� · q j�0�� +
2

N

�	
n=0

N−1
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k=1
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cos
 k�

N
�i +

1

2
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N
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1

2
�
exp�− 
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3kBT

2Nm�2 +
3kBT
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N
�i +

1

2
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 k�

N
� j +

1

2
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kt� . �3�

Because ��t�= �qn1
�t�+qnA,eq−qnD

�t�−qnD,eq� is the distance
of the D-A at beam index nD and nA, defining 
� �t� as the
distance deviation from its equilibrium value �qnA,eq−qnD,eq�,
the ACF CQ�t� can be calculated from Eq. �3� and is given by

CQ�t� = �
 � �t�
 � �0��

�
1

3
��qnA

�t� − qnD
�t�� · �qnA

�0� − qnD
�0���

= CQ�0�	
n=1

N−1
1

N
�cos
n�

N
�nA +

1

2
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− cos
n�

N
�nD +

1

2
�
�2

exp
− �t sin2�n�

2N
�
 , �4�

where CQ�0��2kBT /m�2. Equation �4� was obtained by a
Taylor’s series expansion of the D-A distance deviation in
terms of qk�t�. To analyze the fluctuations in single molecule
ET rate �4,5�, one is concerned about small distance changes
from that of the equilibrium conformation. We assume that
the ratio of D-A distance fluctuations with respect to the
equilibrium D-A distance is small and is primarily due to
stretching or contraction of the springs. If the distance fluc-
tuation is large such as caused by rotation of a segment
around a bond, higher-order terms in the expansion need to

be included and Eq. �4� would become more complicated.
The fluctuating qk�t�, driven by stationary white noise F�t�,
represents a Gaussian process with zero mean, �qk�t��=0,
and all higher-order correlations can be reduced to two-time
correlation pairs. In the limit of a very large N, Eq. �4� can be
simplified to

CQ�t�/CQ�0� = �
0

� 2d�

�
�1 − cos��nA + nD����

��1 − cos��nA − nD����exp�− �t�1 − cos ��/2�

� t−1/2/���, if 1 � �t � �nD − nA� . �5�

In some applications of the Rouse model to NMR relax-
ation studies of polymers �14� one is interested in the dis-
tance ACF between two ends of a chain—i.e., nA=0 and
nD=N−1. Equation �4� yields

CQ�t�/CQ�0� = 	
k=odd

N−1
2

N
cos2� k�

N
�exp�− 
kt� , �6�

and in the limit of a large N it becomes

CQ�t�/CQ�0� = exp�− �t/2��I0��t/2� + I1��t/2�� , �7�

where Ip�x� is the modified Bessel function of the first kind
of order p. At large x, Ip�x��exp�x� /�2�x �17�, one has
CQ�t� /CQ�0�� t−1/2 /���. Equation �7� can also be expressed
by Laplace transformation �17� as

CQ�s�/CQ�0� = 2/�s��s + � + �s� . �8�

If � is time dependent and has a memory, one needs to use
Eq. �1b� with a time-retarded memory kernel ����. By replac-

ing � in Eq. �8� with �̄�s� or 4�2 / �̄�s�, one obtains

CQ�s�/CQ�0� = 2/�s��s + �̄�s� + �s� . �9�

If ��s��s� at small s, by inverse Laplace transformation one
obtains an asymptote

CQ�t�/CQ�0� � t−�1−��/2. �10�

Such a generalization to a frequency-dependent friction leads
to similar fractal behavior as recently discussed by Granek
and Klafter �10�. For the special case with a constant �, one
has Eq. �6� corresponding to �=0.

If the spring constant and the friction for each chain in an
ensemble are not uniform, but with a distribution—i.e., � or
� is distributed—we assume a normalized distribution
�c

2 exp�−��c� in � �or 4�2 /�� where 1/�c is the characteristic
distribution width. Averaging Eq. �7� over such a distribu-
tion, we obtain a very simple time dependence

CQ�t�/CQ�0� =
2

1 + �1 + t/�c

, CQ�0� � 2kBT/m�c
2, �11�

where �c
2=� /4�c. Again, one obtains the same asymptotic

t−1/2 power law. If other distribution functions were used,
CQ�t� might not be as simple and the short-time behavior
could be different.

We now examine the temporal behavior of CQ�t� over the
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entire time span for two cases, with a D-A pair at the chain
ends or elsewhere. As illustrated in Figs. 2 and 3, at very
short times, both cases yield a flat time dependence. As time
t increases, CQ�t� follows t−1/2 power-law behavior. The tran-
sition time between these two regimes is dictated by 1/� and
the attached positions of the D-A pair. At a much later time,
CQ�t� follows an exponential decay. The time of this change
in Fig. 2 is dictated by �nD−nA�2. For the chain-end attach-
ment of Fig. 3, however, such a transition time is dictated by
the Rouse relaxation time constant TR=4N2 /��2, which de-
pends on N2. In Fig. 4 we compare CQ�t� of Eq. �11� with Eq.
�7� and with the Mittag-Leffler function of H=3/4, which is
equivalent to exp��t /4�erfc���t /4� �9�. In a more recent
study, Debnath et al. �18� considered a continuous chain
model, a variation of the discrete model of this work. They
also concluded that a flexible chain model could reproduce
the above desired value for H= 3

4 as also shown indepen-
dently above.

We now consider the temporal behavior according to Eq.
�9� with a frequency-dependent ��s�. For simplicity, assum-
ing ��s�=�0�s+�1�−�s� so that ��s���0 for large s, and
��s���0�1

−�s� for small s, CQ�t� of Eq. �9� can be calculated
by numerical inverse Laplace transformation. As illustrated
in Fig. 5�a�, CQ�t� exhibits a t−� power law at long times,
where �= �1−�� /2. A similar power-law dependence was
discussed by Granek and Klafter �10� using a different ap-
proach.

Finally we consider the effects of cross links. With the
inclusion of cross links, the coupling matrix R no longer
possesses the simple band matrix form and numerical meth-
ods are needed to calculate the distance ACF. As illustrated
in Fig. 5�b�, showing deviations from the ideal Rouse model,
the exponential tail becomes more prominent as the cross
links increase. Because the ET rate decreases exponentially
with distance, for an activationless ET to occur in 10−9 s for
proteins, the separation is about 15 Å �19� and is shorter if

FIG. 2. �a� CQ�t� /CQ�0� of Eq. �4� for a D-A pair attached to
various positions �nD ,nA�. �b� Semilogarithmic plot of CQ�t� /CQ�0�
showing long-time exponential decay which is dictated by �nD

−nA�. The decay rate is insensitive to the attached position, and
�nD−nA � =200 is used. 1 /� was set at 1 for all illustrations as a time
unit.

FIG. 3. �a� CQ�t� /CQ�0� of Eq. �6� for various bead units N.
CQ�t� /CQ�0� stays at 1 if �t�1, becomes a power law of t−1/2 when
�t�1, and then breaks down much later. �b� Semilogarithmic plot
of CQ�t� /CQ�0� showing a single-exponential decay at long times as
exp�−t /TD� where TD=4N2 /��2.

FIG. 4. Comparison of CQ�t� /CQ�0� among the Rouse model
with a distributed � �curve A, with � set at 1 /��c�, the ordinary
Rouse mode �curve B�, and the FBN model �curve C� with
exp��t /4�erfc���t /4�.
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activation energy is involved. The time span for the power-
law CQ�t� depends on the bead-unit separation between the
D-A pair. To have CQ�t� with a power law cover two decades

in time �4,5�, we estimate that more than 30 bead units be-
tween D-A are needed, and so the chain would also need to
loop back to bring the D-A within 15 Å proximity or closer.
We have analyzed and fitted the data of Min et al. �5� using
Eq. �11�, and with ��1.4 Å−1 we estimated CQ�0�
=0.16�±0.01� Å2 and �c=0.11�±0.01� s. At kBT�25 meV,
an effective force constant m�c

2 between Kuhn segments is
estimated to be about 5.1 N/m. However, the estimated � is
several orders of magnitude larger than the ordinary value of
1013 s−1 for polymers. Although experimental power-law be-
havior can be reproduced by chain dynamics, a search for a
different mechanism may be needed because of the possibil-
ity of numerous cross links in native proteins and the unex-
pectedly large �.

In summary, we considered the distance autocorrelation
function CQ�t� for a D-A pair attached to any position in a
finite linear chain. We examined its temporal behavior over
the entire time span, based on an ideal Rouse model and
some variations. CQ�t� was shown to exhibit three distinct
types of temporal behavior, starting with a constant, then a
power law of t−�, and finally a long-time exponential decay,
where a �= 1

2 for an ideal Rouse chain with time-independent
friction. Although we included the case of chain-end attach-
ment, Eq. �4� for any attached location is more practical. The
derived distance ACF for any two points in a chain with or
without cross links could be applied to fluorescence reso-
nance energy transfer �FRET� �20,21�. If 
� �t�, the D-A dis-
tance fluctuation from its equilibrium value, is not small,
higher-order terms in Taylor’s expansion need to be in-
cluded. Because of the slow �−6 distance dependence for
FRET efficiency, one can explore a D-A pair at a much larger
separation �25–80 Å� �21�. As in single-molecule ET, fluc-
tuating FRET rates could also provide information about
conformation-induced distance fluctuations.
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FIG. 5. �a� CQ�t� /CQ�0� for the Rouse model with a frequency-

dependent friction and �̄�s�=�0�s+�1�−�s�, following an
asymptotic power law of t−�, where �= �1−�� /2. For frequency-
independent friction, �=0 and �= 1

2 . Here �0=�1=1 was used. �b�
CQ�t� /CQ�0� for a chain of 250 units, ensemble averaged over ran-
dom positions for various percentages of cross-linked beads. In ad-
dition to the nearest-neighbor couplings, a 10% of cross links, as an
example, means that 25 pairs of randomly chosen beads are coupled
by the harmonic spring constant.
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